Thermalization and localization in constrained disordered systems

F. J. Burnell
with
Anushya Chandran
Marc Schulz, Chun Chen

Quantum chaos, or thermalization of closed quantum systems

Small region (A)

- Q: If you start in a state where all spins in A point up, how does the system thermalize?

(How) do closed quantum systems thermalize?

Small region (A)

- Information about this initial state cannot be lost, but it typically becomes highly delocalized
- So A looks thermal, because no information about the initial state can be recovered by looking only at A.

Eigenstate Thermalization Hypothesis (ETH)

(Deutsch and Srednicki '91)

$$
\text { e.g. } \quad S_{A} \propto V_{A}
$$

Eigenstate Thermalization Hypothesis (ETH)

- If true, closed quantum system thermalizes, and thermodynamics holds. ("Thermal phase")
- But this is not the only option!

Localization

- Anderson localization: single-particle wave functions are exponentially localized in space.
- No transport, so an infinitely long local memory of initial state

Basko Aleiner Altshuler '05 Imbrie '16

and many others (Review; Nandkishore \& Huse)
 Many-body Localization

- Local conserved quantities (infinitely long local memory of initial state)
- No transport, no thermodynamics, $S_{A} \propto C$

Eigenstate phases

- Numerically many 1D systems appear to undergo a transition from MBL to ETH as disorder/ interactions changes

Constraints

- Constrained systems that you (may) care about
- Anyon models
- Dimer models
- gauge theories
- Blockaded Rydberg atoms
- Constraints = no local product Hilbert space. Does this affect ETH vs. MBL?

Constrained Hilbert space: example

Hilbert space: Ising chain

Constraint: no 2 adjacent spins down

Constraints and locality

$$
\begin{aligned}
& 1 \\
& \frac{1}{1} \\
& \frac{1}{1} \\
& \sigma_{i+1}^{z}=+1
\end{aligned}
$$

- Measuring σ_{i}^{z} influences σ_{i+1}^{z}
- No local operators

How long-ranged is the entanglement in the Hilbert space?

- Effect of first measurement falls off exponentially with inter-bond separation

$$
P\left(\sigma_{i+r}^{z}=1 \mid \sigma_{i}^{z}=-1\right)=P\left(\sigma_{i+r}^{z}=1\right) P\left(\sigma_{i}^{z}=-1\right)+\mathcal{O}\left(d^{-2 r}\right)
$$

Operators are exponentially local

- Good enough for ETH!
- MBL?

Constraints and MBL: Model

- Projected Pauli operators

$$
\begin{aligned}
& \tilde{Z}_{i}=\sigma_{i}^{z} \\
& \tilde{X}_{i}=P_{\sigma_{i-1}^{z}=1} \sigma_{i}^{x} P_{\sigma_{i+1}^{z}=1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 蛞 } \ddagger \Rightarrow 0
\end{aligned}
$$

Constraints and MBL: Model

$$
\tilde{Z}_{i}=\sigma_{i}^{z}
$$

$$
\tilde{X}_{i}=P_{\sigma_{i-1}^{z}=1}=1 \sigma_{i}^{x} P_{\sigma_{i+1}^{z}=1}
$$

- (Interacting) Hamiltonian: random fields in X and Z

$$
\begin{aligned}
& H=\sum_{i}\left(\bar{g}+g_{i}\right) \tilde{X}_{i}+\sum_{i} h_{i} \tilde{Z}_{i} \\
& g_{i} \in\left[-W_{x}, W_{x}\right] \quad h_{i} \in\left[-W_{z}, W_{z}\right]
\end{aligned}
$$

Constrained operators and local

 conserved quantities (I-bits): diagonal$$
H=\sum_{i} h_{i} \tilde{Z}_{i} \quad \tilde{Z}_{i} \text { conserved }
$$

but not independent: $\tilde{Z}_{i} \tilde{Z}_{i+1}=\tilde{Z}_{i}+\tilde{Z}_{i+1}-1$

Constrained operators and local

 conserved quantities (l-bits): off-diagonal$$
\begin{aligned}
& H=\sum_{i} g_{i} \tilde{X}_{i} \\
& \frac{1}{\sqrt{2}}(\boldsymbol{\phi} \boldsymbol{\phi} \oint \pm \boldsymbol{\phi} \oint \boldsymbol{\phi}) \quad \tilde{X}_{i}= \pm 1
\end{aligned}
$$

- Can't be simultaneous eigenstate of $\quad \tilde{X}_{i}, \tilde{X}_{i+1}$
- $\left\{\tilde{X}_{i}\right\}$ cannot all be l-bits

Constrained operators and local

 conserved quantities (l-bits): off-diagonal
\tilde{Z}_{2} conserved

$$
\tilde{X}_{1}, \tilde{Z}_{2}, \tilde{X}_{3}
$$

Constrained operators and local

 conserved quantities (l-bits): off-diagonal
$\begin{array}{llll}g_{1} & h_{2} & g_{3} & \text { (dominant fields) }\end{array}$
$\tilde{X}_{1}, \tilde{Z}_{2}, \tilde{X}_{3} \quad$:aproximate l-bits

Constrained operators and local

 conserved quantities (l-bits): off-diagonal

Signatures of localization for $W_{x}<W_{z}$

Localization without Zfields?

Localization without Zfields?

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(\boldsymbol{\phi} \boldsymbol{\phi} \pm \oint \oint \oint) \quad \tilde{X}_{i}= \pm 1
\end{aligned}
$$

- Trouble: degeneracies at 0-energy!

Totally off-diagonal I-bits

- No degeneracy after fixing BC's
- I-bits: $\tilde{X}_{i} \tilde{X}_{i+1}(i=1 \operatorname{Mod} 3)$ stable

Summary

- Constraints = quasi-local operators
- Does not intrinsically destroy thermalization or localization
- Interplay between constraints and disorder leads to complex "frustrated" eigenstate phase diagrams

